超滤(简称UF)是一种固液分离的技术,它的核心是一种膜俗称超滤膜。超滤是以压力为推动力,利用超滤膜不同孔径对液体进行分离的物理筛分过程,具有常温、低压、无相变、能耗低、效率高、操作简便等特点,目前在饮用水净化、工业用水处理、饮料、生物、食品、医药、环保、化工、冶金、石油等许多方面已得到广泛应用。
膜分离过程分类
在膜法液体分离技术领域,从分离精度上划分由粗到精分为四类:微滤(MF)、超滤(UF)、纳滤(NF)和反渗透(RO),如图1。
图1膜分离功能示意图
微滤(Microfiltration),简写为MF,截留颗粒直径0.1~1m之间。微滤膜允许大分子和溶解性固体(无机盐)等通过,但会截留悬浮物、细菌及大分子量胶体等物质。微滤操作压力一般在0.01~0.2MPa之间。
超滤(Ultrafiltration),简写为UF,截留颗粒直径0.~0.1m之间。超滤允许小分子物质和溶解性固体(无机盐)等通过,同时截留下胶体、蛋白质、微生物及大分子有机物,用于表示超滤膜孔径大小的切割分子量一般在1,~,之间。超滤操作压力一般在0.1~0.6MPa之间。
纳滤(Nanofiltration),简写为NF,截留颗粒直径0.m(1nm)。纳滤膜的操作区间介于超滤和反渗透之间,其截留有机物质的分子量约为~左右,截留溶解性盐类的能力为20%~98%之间,对可溶性单价粒子的去除率高于高价离子,一般用于除去地表水的有机物和色素、地下水的硬度和部分溶解盐、食品和医药生产中有用物质的提取、浓缩等。纳滤操作压力一般在0.5~1.5MPa之间。
反渗透(ReverseOsmosis),简写为RO,截留颗粒直径小于0.m(1nm)。反渗透能有效截留所有的溶解盐份及分子量大于的有机物,同时允许水分子通过,主要用于苦咸水及海水淡化,锅炉补给水,工业纯水及饮用纯净水生产,废水处理。反渗透操作压力一般在1~10MPa之间。
超滤基本原理
超滤是一种以膜两侧的压力差为驱动力,以超滤膜为过滤介质,与膜孔径大小相关的筛分过程,超滤膜表面的微孔只允许水及小分子物质通过而成为透过液,而体积大于膜表面微孔径的物质则被截留在膜的进液侧,成为浓缩液,从而实现对原液的净化、分离和浓缩的目的,如图2。超滤是一种物理分离过程,不发生任何相变。
图2超滤膜的截留范围
超滤可以将原液中的胶体物质、大分子物质、颗粒、细菌、病毒和原生动物等进行截留,通过浓缩液排放、反冲洗和化学清洗而去除。
超滤过程有如下特点:
(1)超滤过程无相际变化,可以在常温及低压下进行分离,因而能耗低;(2)设备体积小,结构简单,故投资费用低,易于实施;(3)超滤分离过程只是简单的加压输送液体,工艺流程简单,易于操作管理;(4)溶液在分离、浓缩过程中不发生质的变化,因而适合于保味及热敏性溶液的处理;(5)适合于从稀溶液中分离微量贵重大分子物质的回收和低浓度大分子物质的回收;(6)能将不同分子量的物质分级分离;(7)在使用过程中无任何杂质的脱落,保证被处理溶液的纯净。
超滤相关术语
原水:进入超滤系统的未经处理的水,还没有透过超滤膜。
水通量:是指在25℃水温和0.1MPa水压下,单位时间内、单位膜面积所透过纯水的体积。(单位:升/小时.平方米.0.1MPa)。
载留率(R0)与切割分子量(MWCO):膜丝上微孔的形状和大小并非完全一致的,常使用截留率和切割分子量两个参数共同来衡量,截留率是指溶液中被截留的特定溶质的量所占溶液中特定溶质总量的比率。当90%的溶质被膜截留时,在截留曲线所对应该类溶质的最小分子量即为该膜的切割分子量。超滤膜的孔径大约在0.至0.1微米之间,其对应的切割分子量约为1,—,。
孔径分布:相同切割分子量的超滤膜因膜丝上孔径大小分布的不同,其分离的效果也会有所差异,通常使用泡压法来测定超滤膜的孔径的分布,超滤膜上的孔径大小应均匀一致,孔径分布曲线窄,截留性能敏锐,选择性好。
泡点测试:泡点是用来测试监控膜性能及膜组件完整性的一种常用方法。泡点是指膜完全浸润并浸泡在液体中,从膜的一边加以一定压力的气体,从膜的另一边开始出现连续起泡时的最低压力。泡点测试常常用来检测膜的最大孔径。
断裂强度与断裂伸长率:超滤膜的机械强度大小反映了膜丝抵抗断丝的能力,断丝使超滤膜失去分离性能,是评价超滤膜质量优劣的一项重要指标,机械强度由膜丝的断裂强度和断裂伸长率来表征。一般使用电子单纱测力仪测量单根膜丝的断裂强度和伸长率。
死端过滤:原液中的水分子全部渗透过超滤膜,没有浓缩液流出,当原液中被分离物质浓度很低时,为了降低能耗,通常采用死端过滤,或称为全量过滤。
错流过滤:在过滤时有一部分的浓缩液体从超滤膜的另一端排掉,当原液中能被膜截留的物质浓度很高时,膜的过滤阻力增长很快,此时多采用错流过滤。
内压式过滤:原液先从膜丝内孔进,经压力差驱动,沿径向由内向外渗透过中空纤维成为透过液为内压式过滤。
外压式过滤:原液经压力差驱动沿径向由外向内渗透过中空纤维膜丝成为透过液,而截留的物质汇集在中空丝的外部时为外压式过滤。
跨膜压差:表示水透过膜的实际所需的驱动力,计算为原水侧的平均压力与产水侧平均压力的差。
回收率:单位时间超滤净水产量(去除反洗所需用水量)与总原水量的比值R。
污染:被膜截留而沉积在膜表面的固体物质。污染常常导致膜通量的衰减。通常需要采用化学或者物理方法清除膜表面的污染物,恢复膜通量。
反洗:将超滤透过液从膜丝内侧(产水侧)在一定压力作用下流向膜丝外测(原水侧)。
浓差极化:引起被截留的悬浮物在膜表面聚集的现象。通常提高膜丝表面液体的切向流速可以有效降低浓差极化的现象。
亲水性:亲水性膜材料对水有较强的亲合力,膜的表面很自然的具有润湿的特性。
疏水性:膜材料对水的排斥特性。疏水性膜材料具有很低的吸水性能,因此在表面水常呈颗粒状。常用接触角表征材料的亲水性或者疏水性。
超滤膜成膜材料
可以用来制造超滤膜的材料很多,包括聚偏氟乙烯(PVDF)、聚醚砜(PES)、聚丙烯(PP)、聚丙烯腈(PAN)、聚氯乙烯(PVC)等。90年代初,聚醚砜在商业上取得了应用,而90年代末,性能更优越的聚偏氟乙烯(PVDF)超滤膜开始被广泛地应用于水处理行业。目前聚偏氟乙烯(PVDF)和聚醚砜(PES)成为制造中空纤维超滤膜的主流材料。
超滤膜在水处理应用中的工艺
1、前处理:
超滤法在水处理及其他工业净化、浓缩、分离过程中,可以作为工艺过程的预处理,也可以作为工艺过程的深度处理。在广泛应用的水处理工艺过程中,常作为深度净化的手段。根据中空纤维超滤膜的特性,有一定的供水前处理要求。因为水中的悬浮物、胶体、微生物和其他杂质会附于膜表面,而使膜受到污染。由于超滤膜水通量比较大,被截留杂质在膜表面上的浓度迅速增大产生所谓浓度极化现象,更为严重的是有一些很细小的微粒会进入膜孔内而堵塞水通道。另外,水中微生物及其新陈代谢产物生成粘性物质也会附着在膜表面。这些因素都会导致超滤膜透水率的下降以及分离性能的变化。同时对超滤供水温度、PH值和浓度等也有一定限度的要求。因此对超滤供水必须进行适当的预处理和调整水质,满足供水要求条件,以延长超滤膜的使用寿命,降低水处理的费用。
A、微生物(细菌、藻类)的杀灭:当水中含有微生物时,在进入前处理系统后,部分被截留微生物可能粘附在前处理系统,如多介质过滤器的介质表面。微生物的存在对中空纤维超滤膜的危害性是极为严重的。除去原水中的细菌及藻类等微生物必须重视。在水处理工程中通常加入NaClO、O3等氧化剂,浓度一般为1~5mg/l。此外,紫外杀菌也可使用。
B、降低进水混浊度:当水中含有悬浮物、胶体、微生物和其他杂质时,都会使水产生一定程度的混浊,该混浊物对透过光线会产生阻碍作用,这种光学效应与杂质的多少,大小及形状有关系。
C、悬浮物和胶体物质的去除:向原水中加入与胶体粒子电性相反的荷电物质(絮凝剂)以打破胶体粒子的稳定性,使带荷电的胶体粒子中和成电中性而使分散的胶体粒子凝聚成大的团块,而后利用过滤或沉降便可以比较容易去除。
D、可溶性有机物的去除:可溶性有机物用絮凝沉降、多介质过滤以及超滤均无法彻底去除。目前多采用氧化法或者吸咐法。(1)氧化法:利用氯或次氯酸钠(NaClO)进行氧化,对除去可溶性有机物效果比较好,另外臭氧(O3)和高锰酸钾(KMnO4)也是比较好的氧化剂,但成本略高;(2)吸附法:利用活性炭或大孔吸附树脂可以有效除去可溶性有机物。但对于难以吸附的醇、酚等仍需采用氧化法处理。
E、供水水质调整:(1)供水温度的调整:超滤膜透水性能的发挥与温度高低有直接的关系,当供水温度较低时,可采用某种升温措施,使其在较高温度下运行,以提高工作效率。但当温度过高时,同样对膜不利,会导致膜性能的变化,对此,可采用冷却措施,降低供水温度;(2)供水PH值的调整:用不同材料制成的超滤膜对PH值的适应范围不同,如果进水超过使用范围,需要加以调整。
2、操作参数:
正确的掌握和执行操作参数对超滤系统的长期和稳定运行是极为重要的,操作参数一般主要包括:流速、压力、压力降、浓水排放量、回收比和温度。
A、流速:流速是指原液(供给水)在膜表面上的流动的线速度,是超滤系统中的超滤一项重要操作参数。流速较大时,不但造成能量的浪费和产生过大的压力降而且加速超滤膜分裂性能的衰退。反之,如果流速较小,截留物在膜表面形成的边界层厚度增大,引起浓度极化现象,既影响了透水速率,又影响了透水质量。在允许的压力范围内,提高供给水量,选择高流速,有利于中空纤维超滤膜性能的保证。
B、压力和压力降:在选择工作压力时除根据膜及外壳耐压强度为依据外,必须考虑膜的压密性,及膜的耐污染能力,压力越高透水量越大,相应被截留的物质在膜表面积聚越多,阻力越大,会引起透水速率的衰减。此外进入膜微孔中的微粒也易于堵塞通道。总之,在可能的情况下,选择较低工作压力,对膜性能的充分发挥是有利的。
C、回收比和浓缩水排放量:在超滤系统中,回收比与浓缩水排放量是一对相互制约的因素。回收比是指透过水量与供给量之比率,在多数情况下,也可以采用较小的回收比操作,而将浓缩液排放回流入原液系统,用加大循环量来减少污垢层的厚度,从而提高透水速率,有时并不提高单位产水量的能耗。
D、工作温度:超滤膜的透水能力随着温度的升高而增大,一般水溶液其粘度随着温度而降低,从而降低了流动的阻力,相应提高了透水速率。在工程设计中应考虑工作现场供给液的实际温度。特别是季节的变化,当温度过低时应考虑温度的调节。
超滤系统的运行管理
1、预处理系统
预处理系统是指原液在进入超滤装置之前去除各种有害杂质的工艺过程及设备。预处理工艺是根据原液情况及处理的要求来确定的,没有固定模式,但下述选择原则可供参考。
⑴地下水及含悬浮物、胶体物质小于50mg/l时宜采用直接过滤或者在管道中加入絮凝剂过滤;⑵地面水及含悬浮物、胶体物质大于50mg/l应采用混凝沉淀、过滤工艺;⑶原水中含有细菌、藻类及其他微生物较多时,必须先行杀菌,然后再按常规程序处理,灭菌剂有氯、次氯酸钠、臭氧等,而过氧化氢、高锰酸钾等多用清洗组件时用来杀菌,因为预处理用量大,不经济;⑷原水经杀菌剂处理后,如果水中含有较多的余氯或其他强氧化剂,可加入亚硫酸钠等还原剂或者用活性碳吸附去除。
2、运行前的准备工作
⑴进水水质的检查,重点是检查进水的浊度或SDI值、PH值和细菌、微生物、余氯等项目,应达到设计要求的进水指标后方可输入超滤系统;⑵清洗设备及管道,超滤系统组装完成后,在启动之前还必须对系统中所有过流部分进行清洗;⑶管路系统检查,操作人员必须掌握工艺流程路线,检查各有关设备和管是否有误接的地方,同时还要检查进、出口阀门的启闭情况。
3、启动
当做完上述各项准备工作后,可先进行试启动,即接通电源,打开进水阀门,开动泵后立即停止,观察水泵叶轮转动方向是否正确,检查水泵在启动时有无反常的噪音产生,以判断水泵是否能正常运行。对于全自动的控制装置必须预先设置操作程序,以便启动后进入正常顺序运行。
4、运行
a、升压:水泵转动后,逐渐打开超滤系统的进水阀门,相应调节浓缩水出口阀门使系统升压及保持浓缩水的流动,通常情况下,应当缓慢转动阀门,大约在1min左右时间内升至所需的工作压力,有利于对设备及膜的保护;
b、监控及记录:注意超滤设备进出口压力差的变化,进口压力应按设计值操作,但随着运行时间延长,出口处压力会逐渐降低,即压力差会逐渐增大,应当采取相应措施,即采取物理或化学方法进行清洗。运行中定时分析供水水质和超滤水水质,发现有突然变化现象,应立即采取措施;
c、回收比及其调节:运行中观察浓缩水的排放量及透水量,始终保持在允许的回收比范围内运行。回收比过大或过小,于超滤膜的正常运行都是不利的;
d、膜的清洗:判断超滤膜是否需要清洗的原则如下:
⑴根据超滤装置进出口压力降的变化,多数情况下,压力降超过初始值0.05MPa时,说明流体阻力已经明显增大,作为日常管理可采用等压大流量冲洗法冲洗,如无效,再选用化学清洗法;⑵根据透水量或透水质量的变化,当超滤系统的透过水量或透水质量下降到不可接受程度时,说明透过水流路被阻,或者因浓度极化现象而影响了膜的分离性能,此种情况,多采用物理——化学相结合清洗法,即进行物理方法快速冲洗去大量污染物质,然后再用化学方法清洗,以节约化学药品;⑶定时清洗:运行中的超滤系统根据膜被污染的规律,可采用周期性的定时清洗。可以是手动清洗,对于工业大型装置,则宜通过自动控制系统按顺序设定时间定时清洗。
e、灭菌:一般采用定期灭菌的方法,灭菌的操作周期因供给原水的水质情况而定。灭菌药品可用~1mg/l次氯酸钠溶液或1%过氧化氢水溶液循环即可。
5、超滤系统常见故障及处理措施
a、供水压力低或供水量不足,有可能水泵转动方向相反,或水泵进水管泄漏,此时水泵可能激烈震动;
b、压力降增大,系统内受阻或流速过大,应疏通水道或减少浓缩水排放量;
c、透水量下降,可能膜被压密或膜被污垢堵塞,前者停机松驰,一般不易恢复,后者则应进行清洗;
d、截留率下降,水质恶化,有多种可能,浓差极化时应用大流量冲洗,密封损坏应更换或修补。中空纤维断裂或破损,则应更换膜组件。
6、中空纤维超滤膜的污染及清洗再生技术
膜的堵塞是绝对的,一般超滤系统都应当建立清洗和再生技术。清洗膜的方法可分为物理方法和化学方法两大类。
a、中空纤维超滤膜的物理清洗法:该方法是利用机械的力量来去除膜表面污染物。整个清洗过程不发生任何化学反应。
①水气混合清洗法:将净化过的压缩空气与水流一道进入超滤膜内,水——气混液会在膜表面剧烈的搅运作用而去除比较坚实的杂质。效果比较好,但应注意压缩空气的压力与流量;
②负压反向冲洗法:是一种从膜的负面向正面进行冲洗方法,对内外有致密层的中空纤维或毛细管超滤膜是比较适宜的。
b、中空纤维超滤的化学清洗法:利用某种化学药品与膜面有害物质进行化学或溶解作用来达到清洗的目的。
①酸洗法:常用的酸有盐酸、草酸、柠檬酸等;②碱洗法:常用的碱主要有氢氧化钠、氢氧化钾和碳酸钠等;③氧化性清洗剂:利用1~3%H2O2,~1mg/LNaClO等水溶液清洗超滤膜,既去除了污垢,又杀灭了细菌;④加酶洗涤剂清洗:加酶洗涤如0.5%~1.5%胃蛋白酶、胰蛋白酶。
中空纤维超滤膜在使用中应注意事项
1、过滤系统要定期灭菌超滤膜可以截留细菌,但不可以杀死细菌,截留率再好的超滤膜也不能长期保证干净区不长一个细菌,有细菌就可能大量繁殖。因此,必须定期对周转环境及过滤系统进行定期灭菌,灭菌的操作周期因供给原水的水质情况而定。
2、过滤系统所用组件数量是根据设计总透水量而定的。由于装置的透水速率随运转时间而逐渐下降,但经清洗后基本上可以回复到一个相对稳定值,此外,超滤组件的透水量还受到温度、压力、料液浓度、给水浊度的影响,因此设计时必须考虑以上因素。
3、由于每根超滤组件在出厂前加入保护液,使用前要彻底冲洗组件中的保护液。
4、超滤组件要轻拿轻放,并注意保护,由于超滤组件是精密器材,所以在使用安装时要小心,要轻拿轻放,更不能甩坏。
5、使用中空纤维超滤膜前必须认真阅读使用说明,按照超滤膜在水处理应用工艺进行操作。
超滤膜的应用
近30年是超滤技术迅速发展的时期,超滤分离技术被广泛地应用于饮用水制备、食品工业、制药工业、工业废水处理、金属加工涂料、生物产品加工、石油加工等领域。大规模的水处理通常集中在以下方面:饮用水供水终端、地表水处理、海水处理和污水回用。
1.饮用水处理
由于对饮用水的质量要求越来越严格,水处理公司投入越来越大的精力来控制供水管网中存在的微生物的量。为了做到这一点,因此一种方法是进行昂贵、频繁的水质检验,或者在供水终端设置防止细菌和病毒进入的屏障。采用UF系统,可以非常方便的建成这样的屏障。超滤膜对细菌的去除率可以达到6log,对于病毒的去除率达到4log,因此水厂和用水者都不必在担心细菌和病毒的问题。由于饮用水的质量本身就很高(浊度和悬浮固体都非常低),因此此时的膜系统可以可以采用很高的膜通量,可以达到升/平米.小时。同时较高的入水条件,因此反冲频率和化学加强反洗的频率都可以非常低,产水量可以达到99%。如果需要还可以设立二级超滤系统,将第一级的反洗水进一步回用。
2.地表水处理
超滤系统非常多的应用在地表水处理上,处理后的水用于灌溉或作为反渗透的入水,来制备工业用水。这种技术提供了一种新型的工业用水的方式,即不必在购买越来越贵的饮用水,而是就近取用地表水处理后使用。
3.海水淡化预处理
世界上很多沿海地区淡水资源比较缺乏,解决的方法是将海水淡化制取淡水。最早人们通常采用蒸馏技术,从十九世纪60年代,膜技术被用于这些地区的缺水问题。但是,许多反渗透海水淡化系统面临着膜污染严重的问题。主要因为反渗透系统的传统的预处理方法无法提供可靠的入水水质。因此绝大多数淡化工厂,在远远低于其设计出水量的情况下工作,甚至有些工厂的出水量达不到最初设计的30%。超滤系统可以非常有把握的控制海水的水质,为反渗透系统提供高质量的入水,保证反渗透系统的稳定运行。
4.污水回用
随着工业发展,水质污染情况日益严重,同时淡水资源越来约缺少。超滤因为其价格方面的优势为污水的回用提供了一种有吸引力的解决办法。城市污水经超滤处理后,完全可以做为工业用水,甚至是饮用水来使用,这在技术上是完全可以实现的。
5.其他领域应用状况及前景
含油废水的处理已普遍用于金属加工,罐头生产工业的含油废水处理,炼油工业废水及其他领域含油废水处理过程。胶乳的回收:已普遍用于胶粘剂工业中废液的处理。浓缩回收其中的苯乙烯、丁二烯、PVC等胶乳造纸工业废液处理还未广泛采用,在日本和斯堪的纳维亚半岛的某些造纸厂已被采用。白水的前景较好家庭污水处理在旅馆、办公楼、住宅楼已被采用。在新建的户以上的大住宅楼有可能实现小规模的水循环,即用超滤处理过的生活污水冲洗厕所等。高纯水的制备己广泛用于电子工业集成电路生产过程中,主要采用中空纤维组件,膜渗透流率大,能耗低。也用作医药工业用水回收乳清中的蛋白质乳清超滤是乳品工业中应用最大的一个领域,大的超滤膜面积1m2,日处理乳清1m3牛奶超滤以增加奶酶得率应用超滤的奶酶生产新工艺正逐步取代传统工艺。潜在的经济效益大。顾客能否接受是主要问题果汁的澄清在北美的水果加工业已普遍采用。以其高质量、低能耗而具有好的前景明胶的浓缩在食品厂已采用。多数处于实验室或中试水平,但发展很快。浓缩蛋清中的蛋白质处于小规模实验水平。屠宰动物血液的回收回收血液成分将具有很大的市场。该应用在技术上已具有可行性,但工业守旧性、常规标准使它很少应用,十年后可能会有改观食用油的精炼有广泛的应用前景。蛋白质的回收已用于植物蛋白回收,将推广至海藻等浮游生物蛋白的回收。医药产品的除菌已普遍应用于医药和葡萄糖生产厂家。生物技术工业的应用与其他过程相比,从发酵液中分离和浓缩具有生物活性的组分,超滤具有能保持其生物活性回收率高的优点,因而具有很强的竞争性。在这一领域的应用将随基因工程技术产业的增长而增长。酶的提取已广泛用于浓缩葡萄糖氧化酶、膜蛋白酶、凝乳酶、果胶酶激素的提取已用于浓缩以基因工程菌生产的新物质如干扰素、生长激素、人工胰岛素从血液中提取血清白蛋白为提取血清蛋白的重要过程回收病毒处于实验室研究水平从发酵液中分离菌体处于实验室研究水平从发酵液中分离苯丙氨酸采用新型荷电超滤膜的分离方法,处于实验研究水平
延伸阅读